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strength (in terms of AU) such as tetrahydrothio-
phene-I2

6 and TMA-SO2 should behave so differently 
in this respect. 

We believe that further progress toward understand­
ing solvent effects on the spectral parameters of CT com­
plexes will depend upon two factors: (1) the acquisition 
of additional accurate data for both weak and strong 
complexes in the vapor phase; and (2) development of 
methods for the study of particularly weak complexes 
in solution, which may remove possible inadequacies in 
the interpretation of the solution data.20 The present 
study demonstrates the value of a combination of 

(20) P. J. Trotter and M. W. Hanna, / . Amer. Chem. Soc, 88, 3724 
(1966). 

The object of this paper is to discuss an empirical 
equation of A. V. Hill2 and the binding potential 

of Wyman3 from the point of view of McMillan-
Mayer4 solution theory. The Hill equation, which has 
often been used to describe binding of ligands to pro­
teins,6 can be written as 

7,1(1 - Y1) = Kat
n (1) 

where F4 is the fractional occupation of i sites by ligand 
/ at ligand activity a{. The exponent n is, in general, a 
function of at, but is usually found to be essentially con­
stant over a fairly wide range around the midpoint of the 
binding curve.5 

As originally presented by Hill, this equation was a 
partially successful attempt to describe the cooperative 
binding of oxygen to hemoglobin. Its modern im­
portance is derived from the demonstration that the 
Hill equation yields useful thermodynamic information 

(1) This work was supported by Grant No. 5-ROI-AM13164-02 from 
the National Institute of Arthritis and Metabolic Diseases, U. S. Public 
Health Service. 

(2) A. V. Hill, J. Physiol. (London), 40, ivP (1910). 
(3) J. Wyman, / . MoI. Biol., 11, 631 (1965). 
(4) W. G. McMillan and J. E. Mayer, J. Chem. Phys., 13, 276 (1945). 
(5) J. Wyman, Advan. Protein Chem., 19, 223 (1964). 

spectral and nonspectral methods to obtain reliable 
spectral parameters in the vapor phase. For systems in 
which donor, acceptor and complex are not very 
volatile, additional techniques must be used. One 
new method, employing a mixture of polyiodides as a 
constant iodine activity source,21 has been successfully 
used to study the diethyl ether-iodine adduct; the 
technique is apparently applicable to systems in which 
either very weak or moderately strong complexes are 
present. 

Acknowledgment. This work was supported in part 
by National Science Foundation Grant No. GP-8029. 

(21) J. Childs, J. Grundnes, and S. D. Christian, in preparation. 

about homotropic6 reactions, of whatever origin, in 
any system.6 

If logarithms are taken of both sides of this equation, 
the resulting expression forms the basis for the well-
known Hill plot.6 Two important quantities can be 
extracted from such a plot: (1) the minimum value for 
the decrease in work per site required to saturate the 
macromolecule with ligand, which results from coopera­
tive interactions among the sites; and (2) the slope of 
the Hill plot, n, at the midpoint of titration, which is a 
measure of the cooperativity of the binding reaction. 
The two quantities are closely related, and, in fact, one 
is a function of the other.6 The determination of the 
first of these two quantities from a Hill plot and its con­
nection with the second are not based on the assumption 
of a particular cooperative model, but arise from general 
thermodynamic considerations.6 

In the following sections, the methods of statistical 
mechanics are used to investigate more closely the sig­
nificance of the two quantities which are derived from 
Hill plots. The approach taken is, in essence, an ex­
tension of the elegant theory of protein solutions pub-

(6) Homotropic is used for interactions between sites which bind 
the same type of ligand. 

Statistical Theory of Cooperative Binding to Proteins. The Hill 
Equation and the Binding Potential1 

Henry d'A. Heck 

Contribution from the Department of Chemistry, 
University of California, Berkeley, California 94720. Received May 29, 1970 

Abstract: The Hill equation and the binding potential are useful methods of describing the cooperative binding of 
ligands to proteins. Starting from the formal theory of solutions developed by McMillan and Mayer, statistical 
mechanical versions of both of these classical expressions are here derived. The fractional occupation of protein 
sites by ligand is expanded in powers of protein concentration, and is used to derive explicit expressions for the ef­
fects of intermolecular (protein-protein) interactions on both the Hill equation and the binding potential. The 
theory leads to a new definition of the apparent free energy of interaction between sites on a single molecule in 
terms of the free energy of a ligand-transfer reaction between two macromolecules, and provides insight into the 
significance of the slopes of Hill plots in terms of ligand-transfer processes. The results indicate that, in most 
cases, the Hill plot parameters may be expected to be influenced to only a minor or negligible extent by inter­
molecular forces. 

Heck / Statistical Theory of Cooperative Binding to Proteins 



24 

lished by T. L. Hill,7,8 and is thus quite general. The 
dependence of the Hill plot parameters on intermolecu-
lar (protein-protein) interactions is derived. In addi­
tion, a statistical mechanical version of the binding po­
tential is presented which includes explicitly the in­
fluence of intermolecular interactions on this function. 
In the limit of infinitely dilute protein solutions, the 
equation for the microscopic binding potential is for­
mally identical with the corresponding function for the 
macroscopic thermodynamic case.3 

The Hill Equation in the McMillan-Mayer Theory 

We begin with some results of the McMillan-Mayer 
theory for polyatomic multicomponent solutions in 
order to define briefly the notation to be employed in 
later sections. 

We restrict ourselves to solutions containing one 
type of protein and one type of solvent ion or molecule 
whose binding to the protein is considered explicitly. 
The absolute activity of this single solvent species is 
denoted by X = exp(fj./kT). The activities of the re­
maining solvent species are signified by A. Let zs = 
exp(Hs/kT) be the absolute activity of a protein mole­
cule, with / sites, which contains s bound ligand mole­
cules. We take the point of view that a given protein 
molecule to which s ligand molecules are bound has 
accessible to it the full set of energy states associated 
with all possible distributions of the s ligand molecules 
on the sites, that is, that the tl/[s\(t — s)\] protein sub­
species are in "isomeric" equilibrium. 

It follows from the definition of chemical potential 
that, at equilibrium 

z. = \sz (2) 

where z is the absolute activity of a protein molecule 
with s = 0. 

With these definitions, the equivalent of the grand 
canonical ensemble partition function for a multi-
component solute in an osmotic system of volume V 
can be written as 7 'M 0 

m^OL s 

Jexp[ w(m)({m},X,A,z = 0) 
kT 

]d{m} (3) 

In this equation, x represents the osmotic pressure 
difference across a membrane separating a solution con­
taining solute species and solvent species on one side 
from one containing solvent species on the other. Only 
solvent species are capable of permeating the membrane. 

Hs is an effective partition function for a single solute 
molecule of species 5 in the solvent and includes inter­
actions among the s ligand molecules bound to the pro­
tein. For a single molecule of species s, H8 is defined 
as10 

Hs = q(s)/Vys°(K, A) (4) 

where 7S° is the activity coefficient for this species at 
infinite dilution in the solvent. The influence of sol-

(7) T. L. Hill, / . Chem. Phys., 23, 623 (1955). 
(8) T. L. Hill, ibid., 23, 2270 (1955). 
(9) T. L. Hill, "Statistical Mechanics," McGraw-Hill, New York, 

N. Y., 1956, pp 262-285. 
(10) T. L. Hill, "An Introduction to Statistical Thermodynamics," 

Addison-Wesley, Reading, Mass., 1960, pp 353-362. 

vent is implicit both in the single-molecule partition 
function, H3, and in the potential of average force on a 
fixed set of solute molecules m immersed in the outside 
solution which contains solvent species only, w(m) 

({m}, X, A, z = 0). The set of coordinates (transla-
tional and rotational) specifying the position, orienta­
tion, and conformation of each member of this set of 
solute molecules is denoted by {m}. 

We hereafter take w(m)(0) to mean w(m)({m}, X, A, z 
= 0) and employ Wx^(O) to represent the spatial po­
tential of average force9 on molecules of the set m, 
which includes averaging over all rotational configura­
tions in the set, but which depends, in general, on the 
particular solute species comprising the set. In a fluid, 
wx

(m)(Q) approaches zero when the molecules of the set 
are widely separated.9'11 

The fractional occupation of sites is 

X[d exp(irV/kT)/d\]A,z,T,v,y°,, 
tz[d txp(TV/kT)/dz]KA:TiV 

sV0
sHX _ ( m* \ 

P \ d In X/ 

(5) 

Ls = o 
T,y°,w 

P2(ZB3*\ 
2 \b In X/ r , 7 

(6) 

where p is the total density of solute molecules and B2* 
and B1* are, respectively, second and third virial co­
efficients for the solute.10 

From eq 6 we obtain directly for the Hill equation 

1 - Y 

I>f7sX
s - ^rHs\

s(pZ>B2*/b In X + . . .) 
S S 

ZO - s)Hs\
s + ZHMpZB2*/d In X + .. .) (7) 

In the limit p -»• 0 

X>#A* 

1 - Y YXt - s)H,V 
(8) 

Equation 7 gives the first-order corrections to the Hill 
equation for finite protein concentrations. We shall 
discuss the importance of these and other corrections in 
a later section. 

(11) It should, perhaps, be stressed in order to avoid confusion that 
the present approach differs from that taken by T. L. Hill.7 The po­
tential of average force employed in the present paper is related to 
potentials of average force in the Hill theory by 

,,Cm)(O) = -W1n(O) + Xl [H^(CUO) + . .. + 0""(CmJ1O)] (a) 
8 

The "Wm(O) are potentials of average force which vanish without inte­
gration over rotational coordinates when the solute molecules are widely 
separated in a fluid. The configuration integrals in eq 43 are related to 
those of the Hill theory according to 

I <sxpl-wxW(.0)lkTld{mU = 
J V 

/
d{m}el lexp[ -

s,t. 
] I exp[-Wi»((i.)fl)l kT] exp[-Wm(0)/A:r]d{mU (/3) 
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Apparent Interaction Energy 

It may be observed from eq 8 that, as X -*• 0 

In [f/( l - F)] = In (H1ItH0) + In X (9) 

On the other hand, as X -»• =° 

In [YIO. - Y)] = In (tHt/Ht^) + In X (10) 

The slope of the Hill plot at the two extremities is 
unity. 

These two limiting equations define the asymptotes 
of the Hill plot. The vertical distance between the 
asymptotes at any X is proportional to the minimum 
value for the decrease in work per site required to sat­
urate the macromolecule with ligand,6 and is termed the 
apparent interaction energy. When the final asymptote 
lies above the initial one, this energy is conventionally 
taken to be positive.6 From eq 9 and 10, this quantity 
is 

HaHt 
AF1

0 = kT In?2 

H1H1. 
(H) 

= kT in t*ML I L ^ = L ( 1 2 ) 
qiQt-i 7o 7« 

It is evident that the ratio of partition functions in 
eq 11 corresponds to the equilibrium constant in solu­
tion for the transfer of a ligand molecule between two 
protein molecules according to 

P1 + P«_, ^ i P0 + P1 (13) 

where P8 refers to a protein species with s bound ligand 
molecules. 

The entropy change for reaction 13 will involve a 
configurational contribution associated with the possible 
ways in which the given numbers of ligand molecules on 
each protein molecule can be distributed among t sites. 
For the reaction as written, the configurational entropy 
change is 

AS°COnfig = k In I//2 (14) 

Thus, if the net free energy change for this transfer 
reaction arising from enthalpic and further entropic ef­
fects is zero, then it is clear from eq 12 and 14 that AF1

0 

will vanish, except for the contribution of activity co­
efficients at infinite dilution in the solvent. We may 
deduce, therefore, if the ratio of the latter is essentially 
equal to unity, that the apparent interaction energy 
represents just the negative of the net free energy change, 
apart from configurational entropy factors, for the re­
action depicted in (13). 

The interpretation of eq 11 in terms of reaction 13 
thus leads to a new definition of the apparent interaction 
energy. This quantity can be directly related to the 
free energy of a specific ligand transfer reaction. It 
should be noted that an elementary rearrangement of 
eq 11, on which the present interpretation is based, 
leads to an equation which is formally identical with one 
derived by Wyman12 from classical thermodynamic 
considerations. This shows that the present interpreta­
tion of the apparent interaction energy is based as well 
in classical as in statistical thermodynamics. 

It is, incidentally, easy to prove that if the sites are 
independent but unequal, and each is capable of binding 
one ligand molecule, then the apparent interaction en­
ergy will be negative, and the final asymptote of the 
Hill plot will lie below the initial one. To prove this, 

(12) J. Wyman, J. Amer. Chem. Soc, 89, 2202 (1967). 

let each protein molecule have Ti sites of type 1, T2 of 
type 2, . . ., Tm of type m. Define effective partition 
functions for a site of type./ to which zero or one ligand 
molecule is bound as A/0) or A/1). Then, if there is 
a total of s ligand molecules bound to a protein mole­
cule, of which S1 are bound to sites of type 1, S2 are bound 
to sites of type 2, etc., we have that 

• h((oy'-sW)w 
HSV = E IT (15) 

_ i= l 0"i — Si)]SiI 

where the zero of energy for intramolecular interactions 
is arbitrary. The sum is over all sets s = sit S2, ..., sm 

satisfying the restrictions 
m m 

E st = s E r , = / (16) 
» = 1 1 = 1 

If s is allowed to assume all possible values from 0 to 
t, we obtain from the binomial theorem that 

Etf.v = n two) + ht(\)\r (17) 

In the limit p -*• 0, the corresponding equation to (6) is 

Y = 2>#A7'E#*V 

whence 

= (b In I X X V d in \),,Tlv,y'/t 
S 

= ^Tiht(l)\/[hi(0) + ht(l)\]t 

Z r ^ D X / f / ^ O ) + hi(l)\] 

1 - Y ZTMO)IMO) + hi(l)\] 

(18) 

(19) 

If all the sites are identical as well as independent, 
this equation reduces to 

Y A(I)X 
k\ (20) 

1 - Y h(0) 

where k is the equilibrium constant for binding to a 
single site. 

From eq 19, when X -*• 0 

v ZrMWt(O) 
In 

1 - Y 
= In 

and, when X -*• =° 

In 
1 - Y 

T= = In 
ZrM0)/hi(l) 

+ InX 

+ InX 

(21) 

(22) 

As before, the slope of the Hill plot approaches unity 
at the two extreme values of X. 

The difference between the two limiting asymptotes, 
multiplied by kT, gives the apparent interaction energy. 
This difference is, from eq 21 and 22 

111 -, , „J\ T-T7TT (23) 
/ A1(O)X / ht(l)\ 

If the denominator in (23) is greater than the numer­
ator, then the apparent interaction energy is negative. 
Let A/1)/A/0) = k}; then, from the definition of /, the 
denominator in (23) is as shown in eq 24 and 25. 

If the sites are identical as well as independent, then 
ki = kj, and the apparent interaction energy from (23) is 
zero. Otherwise, the last member in eq 25 is positive 
definite, which proves the assertion. 
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(2>«/*0(Z>*fci) = t' + 

E E T<IVI 
m— 1 

- <• + S S 
(I+I-2) (24) 

1 ; = i + l /C /̂fy 

(fc<-/c,)2 (25) 

We shall consider the correction terms in eq 30, 
which apply at finite protein concentrations, in the fol­
lowing section. 

It may be observed from (31) that the equation for the 
slope of the Hill plot is a ratio of two polynomials in 
X, each of the (2t — l)th degree. There are, in general, 
two ways in which this ratio can be equal to unity: 
(1) term-by-term cancellation, i.e., for every value of 5, 

{^-»»"^-(^-)('s+l'^-.+-)] 
[ & W - ( E w ) ( ^ * x + •••)][»-«>W + (sw)(,.8

a*x+ • 
• • ) ] 

n = 

tie-z\s-2kyHkHs_ky 
s, k 

o) 2 ( - 2 

[ts - 2k(s - k)]HkHs_k\° + £ (s/4)(2t - S)H11W 
Seven — 2 

(30) 

(3D 

The above proof can be easily extended to the case of 
a heterogeneous population of macromolecules, or of a 
macromolecule existing in more than one conforma­
tional form with differing affinities for ligand, but with 
no equilibrium between the forms. If, however, there 
is equilibrium between the forms, then the apparent in­
teraction energy may take on positive values. Indeed, 
as shown by Wyman,12 in this instance the final asymp­
tote of the Hill plot must lie above the initial one for the 
special case where the sites are all identical and in­
dependent. The proof presented by Wyman applies 
in the present microscopic theory; we need only con­
vert the ratio of partition functions in eq 11 to the equiv­
alent form 

Kt HpH1 _ 
HiH,-i KiKt-i 

(26) 

in which Kt is the apparent equilibrium constant for 
binding j molecules of ligand to the macromolecule. 
Then, for the special case just cited, it has been shown12 

that (KiK,..i/Kt) < t2, which means that the apparent 
interaction energy is positive. 

Slope of the Hill Plot 
The slope of the Hill plot is, by definition 

d In F/(l - Y) 
d in X F(I - Y) dX * £ (27) 

It is convenient, in writing a general equation for the 
slope of the Hill plot, to introduce the following opera­
tors. Let 

((even) ( - 1 ( s - l ) / 2 2 ( - l ( s - l ) / 2 

E = E E + E E + 
S, k Sodd = 1 h = 0 Sodd = £+ 1 k*=8 — t 

t (B~2)/2 2t-2 (s-2)/2 

E E + E E 
Seven — 2 k = 0 Seven = * + 2 k = S — t 

((odd) * ( S - D / 2 2t~l (S-D/2 

E = E E + E E + 
B,k S0dd=l k = 0 Sodd = ( + 2 k=>S — t t - 1 ( s - 2 ) / 2 

E E + 
Seven = 2 k = 0 

2t~2 ( s - 2 ) / 2 

E E 
Seven = ( + 1 k = S — t 

(28) 

(29) 

and denote by Ss,/
e 'o) either eq 28 or eq 29 correspond­

ing, respectively, to whether t is even or odd. Then, us­
ing eq 7 and 27, n is found by eq 30. In the limit p -*• 0, 
eq 31 is obtained. 

the corresponding coefficients of X8 in the numerator and 
denominator of eq 31 are equal; (2) coincidental can­
cellation, i.e., for two or more values of s, the cor­
responding coefficients of Xs in the numerator and de­
nominator are unequal, but the total summations for 
all ^ are equal. Of these two possibilities, only the first 
can give rise to a slope which is unity at all values of X. 
We shall concern ourselves with this possibility in the 
following discussions. 

Insight into the physical significance of n is obtained 
if, for any s, we investigate the ratio of coefficients of 
Xs in the numerator and denominator of eq 31. In both 
numerator and denominator, the coefficients of Xs are 
seen to involve sums of products of partition functions, 
HkHs_k, for single protein molecules to which are bound 
k and (s — k) molecules of ligand, respectively. Such 
products are, of course, overall partition functions for 
two distinguishable protein molecules associated, re­
spectively, with the given numbers of ligand molecules. 
To illustrate, suppose that t = 4 and s = 3. Then the 
ratio of coefficients of X3 in the numerator and denom­
inator of eq 31 is 

36H0H3 + 4H1H2 

12HQHS -\- SHiH2 

9 
(HoHA /H1HA 
KH1HJ ^ = ^ KHoHj 

J HOHJ 

KHIH 
+ 2 3 + 2 

H1Hj 
HoHi 

(32) 

In this example, and in general, division of numerator 
and denominator by any one of the HkHs-ks leads to 
an equivalent ratio expressed in terms of equilibrium 
constants for transfer of one or more ligand molecules 
from one of the pair of protein molecules to the other 
member of the pair. 

Now, just as in the discussion in the preceding sec­
tion, the free energies of these transfer reactions will 
involve contributions arising from differences in con-
figurational entropy between reactants and products. 
If the net effect of enthalpic and any further entropic 
contributions to the free energies of the transfer re­
actions is zero, the magnitude of the equilibrium con­
stants will be just that expected from statistical con­
siderations, except for the effects of activity coefficients. 
Should the overall effects of the latter on the equilibrium 
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constants be negligible, or cancel, it will be found for 
every 5 that the ratio of coefficients of X* in the nu­
merator and denominator of eq 31 reduces exactly to 
unity. Consequently, the Hill plot will have unit slope 
for all values of X. 

We shall use the above example as an illustration. 
The statistically expected value for the equilibrium con­
stant HoH3IH1H2 is 

H0H3 = 1 7i 0T2
0 

H1H2 6 To0Ta0 

Hence, if the ratio of activity coefficients at infinite 
dilution in the solvent is essentially equal to unity, eq 32 
becomes 

9(1/6) + 1 9 + 6 
= 1 

3(1/6) + 2 3 + 12 
The exact cancellation of numerator and denominator 

for every value of s corresponds most naturally to the 
situation of identical and independent sites, although, 
of course, this is not the only possible interpretation: 
a combination of positive interactions and unlike sites 
could produce the same result. On the other hand, if 
the slope of the Hill plot is not equal to unity at any 
point, it means that the equilibrium constants for 
ligand transfer (e.g., eq 33) do not have their statistical 
values, and that interactions or inequalities among the 
sites, or both, are manifest. 

The maximum value that the slope of the Hill plot 
may attain corresponds to the hypothetical case of 
"infinite cooperativity." In this case, there are only 
two types of solute molecules present in solution: 
those with no ligand molecules bound, and those for 
which every site is occupied with ligand. Then it can be 
easily seen that eq 31 reduces to 

n - W- - ' (35) 

This same result was obtained by Wyman6 using a 
classical thermodynamic approach. 

We have already shown that if the sites are indepen­
dent, unequal, and bind a single ligand molecule, then 
the apparent interaction energy must be negative. It 
does not necessarily follow from the latter that the slope 
of the Hill plot must be everywhere less than unity. We 
can, however, prove that, given the former restrictions, 
this is indeed so for all finite values of X. As in the pre­
ceding section, we employ partition functions for sites 
of type . /and denote them by A3(O) and A/1), depending 
on whether the sites are empty or occupied by ligand, 
respectively. Then, from eq 18 and 27 

AXO)AXDX 
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The fractions of free and occupied sites of type j are, 
respectively 

/ /0) = A/0)/[A/0) + AXl)X] (38) 

/ /1) = A/l)X/[A/0) + AXl)X] (39) 

Then, from the definition of t, we may write the left-
hand side of eq 37 as 

(33) [^TiMO)JXTMl)]- (£*•<)[?> </<(0)/<(D] = 

Tn — 1 m 

E E r , r ^ / 4 (0 ) - / /0 ) ] [ / / l ) - / , ( I ) ] = 

m — 1 m 

E E TiTjLfW)-MW (40) 
i = \ J=»+1 

where the last term follows from the fact that A(O) + 
Mi) = i. 

If all of the sites are identical as well as independent, 
then /XO) = / /0) for all i and j , and eq 40 is equal to 
zero, which means that the slope is equal to unity. 
Otherwise, eq 40 is necessarily greater than zero, which 
constitutes the proof. 

In the event that the protein molecules can assume 
more than one conformational form, and equilibrium 
exists between the forms, the slope of the Hill plot may 
become greater than unity. In fact, if the sites are 
identical and independent, the slope of the Hill plot 
must be greater than unity, as shown by Watts-Tobin.13 

The proof of Watts-Tobin can be applied in the present 
instance. We may define a macroscopic binding 
polynomial 3>12 for the special case just cited as 

(34) 

*I>, 
n = 

[A/0) + AXDX]2 

ETi 
AXO) 

[AXO) + AXDX] X?" 
AXl)X 

[AXO) + AXDX], 
(36) 

It is readily shown, by application of l 'Hospital 's rule, 
that eq 36 approaches unity in the limits X -»• 0 and 
X -*• oo. To show that n is less than unity at all finite 
values of X, we need only prove that 

\rTt MO) + AXDX]A2-7"" 

tE Ti 

'[AXO) + AXDXL 
AXO)AXDX 

[AXO) + AXDX]2 

N^ = E "i(i + kt\y 
i - 1 

(41) 

> 0 (37) 

in which vt is the fraction of macromolecules in the rth 
conformation. The relationship to the present theory 
is through kt = H1^ JtH ^, the intrinsic affinity con­
stant for binding to a single site of that conformation. 
It follows by the method of Watts-Tobin that the slope 
of the Hill plot must be everywhere greater than unity. 

Effects of Protein-Protein Interactions 

The influence of protein-protein interactions on the 
apparent interaction energy and slope of the Hill plot 
can be given explicitly in terms of configuration inte­
grals. 

Define 

c = £#,X8 

S 

e = 2 > # , X S (42) 
S 

/ = Zs2HV 
S 

f = ( expt-u^^'Xoy/crjdd^dOs')* 
J as' JV 

f = C sxp[-wx^''s"\0)/kT]X ( 4 3 ) 

•J ss's" U V 

d.(\s)xd(W)x&(\s")x 

(13) R. J. Watts-Tobin, / . MoI. Biol., 23, 305 (1967). 
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etc. 

C1 = cV 

C2 = E H,HAS+S' f 
8,8' J SS1 

C3 = E HSH,,HS„V+S'+S" f 

(44) 

etc. 

F1 = eV 

E2 = E(s + s')HsHAs+s' f 
8,af «/ ssf 

E3= E (s + s' + s")HsHs,Hs,rV+*'+°" f 

(45) 

etc. 

F 1 = / F 

F2 = E(* + s'yHsHAB+e' f fA~ 

F3 = E (* + s' + s")2HsH,>H3»\s+s'+s" f 

etc. 
With definitions similar to these, the partial deriva­

tives appearing in eq 6 have already been evaluated.7 

Those appearing in eq 30 are easily obtained by an 
identical procedure. The results are 

2) In X c2\d 2E1J
 K ' 

cW 
d i n X 

/ F 3 - _ 2F2C2 _ C3 4CV* E1C1 _ \ 
\3£i F1C1 C1 "*" C1

2 + F1 7 

cVi?2* = e / 2 F 2 _ 3F1C2 ,F1C2_ Z2X 
d(lnX)2 C^yC1 C1

2 F1C1 2F 1 / 

d22?3* 
c>(ln X)2 

2F2C2 

F^T 

= L(IE* - Il + M.8 _ ^ L 3 , 
C3VC1 3F1 F1C1 C1

2 

F1C2
2 20F1C2

2N 
E1C1

2 ^ C1
3 y/ i E1C1 

16F2C2 

C1
2 

(48) 

(49) 

(50) 

If the terms on the right-hand sides of eq 47-50 are 
assembled over common denominators, it will be seen 
that the numerators are polynomials in X which in­
clude, as coefficients in every term, differences between 
configuration integrals for clusters which are composed 
of the same numbers of protein molecules, but which 
contain different numbers of bound ligand molecules. 
It follows, therefore, that if the configuration integrals, 
defined in eq 43, are the same for all values of s, s', etc., 
that is, are independent of the numbers of ligand mole­
cules bound to the protein molecules which comprise the 
clusters, then the partial derivatives in eq 47-50 must 
vanish for all values of s and X. This result is, of course, 
to be expected in view of the close connection between 
virial coefficients and configuration integrals.9 For 
this case, therefore, protein-protein interactions can 
have no effect on the extent of ligand binding, and, 

therefore, cannot influence either the apparent inter­
action energy or the slope of the Hill plot. 

On the other hand, if the differences between the con­
figuration integrals in eq 47-50 are not zero for any 
values of s, then the partial derivatives will exist at at 
least some values of X. Since, however, the partial 
derivatives involve differences between configuration 
integrals, it seems reasonable to expect that the correc­
tion terms in eq 7 and 30 will, in most cases, be small. 
Indeed, T. L. Hill7 has gathered evidence which indi­
cates that, for the binding of singly charged ions to 
two different proteins, the correction embodied in eq 47 
is of minor or negligible importance. This should be 
true in general whenever the protein concentration is 
itself low. An exception could occur if the binding of 
ligand were accompanied by a large change in the state 
of ionization of the protein, or if the ligand itself were 
highly charged, although it should generally be possible 
to choose conditions such that even these influences are 
negligible. 

Relation to the Binding Potential 

Wyman3 has pointed out that the binding potential 
bears a certain resemblance to the grand canonical par­
tition function of statistical mechanics. The exact con­
nection between the two can be derived readily if we de­
fine the binding potential as that function whose partial 
derivative with respect to the chemical potential of a 
component yields the amount of that component in 
chemical combination with the macromolecule.'4 Then, 
by rearrangement and integration of eq 6, the binding 
potential is easily shown to be 

JI = *7(ln(l + f X + f X2+ ... + f ' X ' ) -

P(B2* (X) — B2* (X = O)) -

(p2/2)(2?3*(x) - 2 V ( X - O ) ) - . - . ] (51) 

where Hj/Ho is the equilibrium constant in solution for 
the reaction 

P0 + /X ^ ± PXy (52) 

In the limit p -»• 0 

JI = JcT In ( E #*X7#0) (53) 

Equation 53 is formally identical with Wyman's equa­
tion for the binding potential.15 The correction terms 
in eq 51 show the effects of finite protein concentrations 
on this function; the terms involve differences between 
virial coefficients for protein molecules at ligand activi­
ties X and 0. Explicit expressions for the virial coeffi­
cients, which give their dependence on X, are7 

B3 
_J_/C_8 _ 3_C 

3C2VC1 C1 
+ 3C2 C1

2 

(54) 

(55) 

etc. The arguments presented by Wyman3 regarding 
the factorability of the binding polynomial, which is the 
macroscopic analog of the polynomial in eq 53, and the 

(14) H. d'A. Heck, ibid., 50, 703 (1970). 
(15) See eq 19 in ref 3. 
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relation of factorability to statistical binding, apply here 
as well as in the macroscopic thermodynamic case. 

In the event that the binding of more than one type of 
ligand molecule to the protein is considered explicitly, 
the binding potential assumes the form 

JI = kT In f E V ' X / » - • • HtIH<\ (56) 

where s refers to sx, sv, . . . molecules of the different 
ligands, Hs is the effective partition function for a single 

The optica] rotatory properties of simple helical poly­
peptides are how well understood, and unambiguous 

assignments of helix sense can be made on the basis of 
optical rotatory dispersion2 (ORD) or circular di-
chroism3 (CD). By simple polypeptides, we mean those 
which have alkyl side chains, side chains with weak 
chromophores (carboxyl, ester, or amino groups), or 
aromatic groups beyond the 7 carbon (e.g., poly-y-
benzyl-L-glutamate). Polypeptides such as poly-L-
tyrosine (PLT) and poly-L-phenylalanine, which have 
aromatic rings attached to the /3 carbon, have drastically 
altered optical rotatory properties, and the helix sense 
remains uncertain.4 

The ORD behavior of PLT in the visible region was 
observed to be anomalous.5'6 Fasman7 showed that 

* Author to whom reprint requests should be addressed at the De­
partment of Chemistry, Arizona State University, Tempe, Ariz. 85281. 
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molecule of protein to which s molecules of ligand are 
bound, and X4 is the absolute activity of ligand species /. 
If HB/H0 is interpreted as an equilibrium constant for 
the reaction 

Po + J„X + *„Y + . . . PX1xF81,... (57) 

the polynomial in 56 becomes formally identical with 
the macroscopic binding polynomial for the case where 
the number of ligands is greater than one. le 

(16) See expression 20 of ref 3. 

copolymers of L-tyrosine and L-glutamic acid of 
varying composition showed a smooth and nearly linear 
change in the Moffitt-Yang8 bo parameter from ca. 
+ 500, characteristic of PLT, to ca. —600, character­
istic of poly-L-glutamic acid (PGA). This indicated 
that L-tyrosine residues fit into the right-handed PGA 
helix and implied but did not conclusively prove that 
PLT forms a right-handed a helix. 

Subsequently, Fasman et a/.,9 extended ORD mea­
surements on PLT down to 227 nm and Beychok and 
Fasman10 reported the CD spectrum in the 214-300-nm 
region. The negative Cotton affect at 224 nm was as­
signed to the peptide n-ir* transition, and because its 
sign coincided with that of the n-ir* Cotton effect in 
simple polypeptides in the right-handed a-helix confor­
mation, a right-handed screw sense of the PLT helix was 
taken to be confirmed. However, this interpretation 
can be questioned. The amplitude of the 224-nm 
Cotton effect in PLT is only about one-third that of the 
222-nm band in simple a-helical polypeptides.3 This 
reduction in magnitude was attributed10 to band overlap 
and/or coupling with transitions characteristic of the 
phenolic side chain. It is possible that coupling with 

(8) W. Moffitt and J. T. Yang, Proc. Nat. Acad. Sd. U. S., 42, 596 
(1956). 

(9) G. D. Fasman, E. Bodenheimer, and C. Lindblow, Biochemistry, 
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Abstract: The optical rotatory properties of poly-L-tyrosine (PLT) are very different from those of simple poly­
peptides, and the helix sense of PLT remains uncertain. Calculations of rotational strengths for peptide and 
side-chain transitions have been performed for four conformations of low potential energy. Two of these are right 
handed and two are left handed, the conformations of a given screw sense differing in side-chain conformation. 
The results of these calculations were shown to be qualitatively independent of chain length and of small variations 
in side-chain conformation. Comparison of calculated and experimental circular dichroism curves indicates that 
only one of the four conformations is consistent with experiment, and that is the conformation we have denoted as 
RA. We conclude that poly-L-tyrosine forms a right-handed helix. Calculations of Ooi, et al., yield a minimum 
potential energy for a right-handed helix, but predict a different side-chain conformation (Rl). We propose that 
the RA conformation is lower than the Rl in free energy because of greater side-chain flexibility and hence more 
positive entropy. 
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